1.6. المراجع العربية:
1- الأمم المتحدة/ اللجنة الاقتصادية والاجتماعية لغربي آسيا. (2020). وضع استراتيجية للذكاء الاصطناعي: دليل وطني. https://archive.unescwa.org/ar/publications/%D8%A7%D8%B3%D8%AA%D8%B1%D8%A7%D8%AA%D9%8A%D8%AC%D9%8A%D8%A9-%D8%B0%D9%83%D8%A7%D8%A1-%D8%A7%D8%B5%D8%B7%D9%86%
2- البلوشي، فاطمة صالح. (2024). إشكاليّات فقهيّة للجِراحة بواسطة الإنسان الآلي (الرُّوبوت). مجلة العلوم الإسلامية، 21(1)، 187. https://doi.org/10.51930/jcois.21.2024.80.0187
3- بركات، سمير. (2024). تقييم جاهزية الجزائر للذكاء الاصطناعي في ضوء المؤشرات العالمية - مؤشر جاهزية الحكومات للذكاء الاصطناعي نموذجًا. مجلة الدراسات الاقتصادية المعاصرة، 9(2)، 213-228. https://asjp.cerist.dz/en/article/261366
4- الفيفي، إ. م. (2023). دور تقنية الواقع المعزّز في دعم نُظم إدارة المعلومات الصحيّة. المجلة العربية للبحث العلمي، 4(2)، 12. https://doi.org/10.5339/ajsr.2023.12
5- نيوفيرسيتي. (2023). استخدامات الذكاء الاصطناعي في الطب. مقالات نيوفيرسيتي: 18 نوفمبر، تم الاسترجاع من https://niuversity.com/ar/ai-%D9%81%D9%8A-%D8%A7%D9%84%D8%B7%D8%A8
6- قناة الحرة. (2024). 11 دولة عربية على مقياس عالمي للذكاء الاصطناعي. https://www.alhurra.com/tech/2024/09/21/11-%D8%AF%D9%88%D9%84%D8%A9-%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9-%D9%85%D9%82%D9%8A%D8%A7%D8%B3
7- حيمر، هواري.، & جزول، صالح. (2024). ضحية الذكاء الاصطناعي. مجلة العلوم القانونية والاجتماعية، 9(3)، 726-742. https://asjp.cerist.dz/en/article/252660
8- عزيزو، محمد. (2025). أخلاقيّات الذّكاء الاصطناعي في الطّب (نظرة في بعض المقترحات). مجلة رؤى مستقبلية للدراسات الاجتماعية والإنسانية، 1(2). https://journals.univ-chlef.dz/index.php/rmshs/article/view/425
9- الكاملي، عبد القادر. (2024). الذكاء الاصطناعي العربي من منظور المؤسسات العالمية. في مؤشر الذكاء الاصطناعي العالمي، قناة الجزيرة، صفحة تكنولوجيا، تقرير منشور بتاريخ: 25/7/2024. https://www.aljazeera.net/tech/
10- غاناسيا، ج.-غ. (2018). الذكاء الاصطناعي: بين الأسطورة والواقع، مقال منشور بتاريخ: 29 يونيو 2018، رسالة اليونسكو،. https://courier.unesco.org/ar/articles/aldhka-alastnay-byn-alastwrt-walwaq.
11- الهيئة السعودية للبيانات والذكاء الاصطناعي. (2024). الذكاء الاصطناعي، https://sdaia.gov.sa/ar/SDAIA/about/Pages/AboutAI.aspx
12- SDAIA، الهيئة السعودية للبيانات والذكاء الاصطناعي. (2024). إطــار تــبني الذكاء الاصطناعي .https://sdaia.gov.sa/ar/SDAIA/about/Files/AIAdoptionFramework.pdf
2.6. المراجع الإنجليزية:
1. Adegbesan, A., Akingbola, A., Ojo, O., Jessica, O. U., Alao, U. H., Shagaya, U., Adewole, O., & Abdullahi, O. (2024). Ethical challenges in the integration of artificial intelligence in palliative care. Journal of Medicine, Surgery, and Public Health, 4, 100158. https://doi.org/10.1016/j.glmedi.2024.100158
2. Aiyapan, V., & Coffin, J. (2024). Artificial intelligence in diagnosing medical conditions and impact on healthcare. MGMA Articles. Retrieved from https://www-mgma-com.translate.goog/articles/artificial-intelligence-in-diagnosing-medical-conditions-and-impact-on-healthcare?_x_tr_sl=en&_x_tr_tl=ar&_x_tr_hl=ar&_x_tr_pto=rq
3. Al-Asad, A. (2023). Artificial Intelligence: Opportunities, Risks, and Reality in Arab Countries. Idhafat Iqtisadiya Journal, 7(1), 165-184. https://asjp.cerist.dz/index.php/en/article/217953
4. Al-Gohary, E., Al-Shabrawy, G., & Hassib, S. (2023). Assessment of the Artificial Intelligence Strategies Announced in the Arab Countries. The Egyptian Journal for Development and Planning. 1-38. https://doi.org/10.21608/inp.2023.326507
5. Alowais, S. A., Alghamdi, S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H., Al Yami, M. S., Al Harbi, S., & AlBkairi, A. M. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education, 23(1), 689. https: //doi.org/10.1186/s12909-023-04698-z
6. Alshuhri, M. S., Al-Musawi, S. G., Al-Alwany, A. A., Uinarni, H., Rasulova, I., Rodrigues, P., Alkhafaji, A. T., Alshanberi, A. M., Alawadi, A. H., & Abbas, A. H. (2024). Artificial intelligence in cancer diagnosis: Opportunities and challenges. Pathology - Research and Practice, 253, 154996. https://doi.org/10.1016/j.prp.2023.154996
7. Aminizadeh, S., Heidari, A., Dehghan, M., Toumaj, S., Rezaei, M., Jafari Navimipour, N., Stroppa, F., Unal, M. (2024). Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artificial Intelligence in Medicine, 149, 102779. https://doi.org/10.1016/j.artmed.2024.102779
8. Carmichael, J. (2024). Translating Human-Centred Artificial Intelligence for Clinical Decision Support Systems into Practice: A Medical Retina Case Study. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '24), Article No. 443, pp. 1-5. https://doi.org/10.1145/3613905.3638182
9. Chaodeethirathkul, P., & Pankham, S. (2023). Developing a model of actual adoption technology and innovation for health in Thailand. Academic Journal of Interdisciplinary Studies, 12(5), 168. https: //doi.org/10.36941/ajis-2023-0135
10. Chaturvedi, U., Chauhan, S. B., & Singh, I. (2024). The impact of artificial intelligence on remote healthcare: Enhancing patient engagement, connectivity, and overcoming challenges. Intelligent Pharmacy. https://doi.org/10.1016/j.ipha.2024.12.003
11. Chau, M. (2024). Ethical, legal, and regulatory landscape of artificial intelligence in Australian healthcare and ethical integration in radiography: A narrative review. Journal of Medical Imaging and Radiation Sciences, 55(4), 101733. https://doi.org/10.1016/j.jmir.2024.101733
12. Chen, P. W., Tseng, B. Y., Yang, Z. H., Yu, C. H., Lin, K. T., Chen, J. N., & Liu, P. Y. (2024). Deep learning model for diagnosis of venous thrombosis from lower extremity peripheral ultrasound imaging. iScience, 27(12), 111318. https: //doi.org/10.1016/j.isci.2024.111318
13. Chong, J. J. R., Kirpalani, A., Moreland, R., & Colak, E. (2024). Artificial Intelligence in Gastrointestinal Imaging: Advances and Applications. Radiologic Clinics of North America. https://doi.org/10.1016/j.rcl.2024.11.005
14. Cui, B., Li, S., & Jin, X. (2025). The Transformative Impact of Artificial Intelligence on Peripheral Nerve Repair. Proceedings of the 2024 5th International Symposium on Artificial Intelligence for Medicine Science (ISAIMS '24), pp. 27-34. https://doi.org/10.1145/3706890.3706895
15. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. https://doi.org/10.7861/futurehosp.6-2-94
16. Echefu, G., Batalik, L., Lukan, A., Shah, R., Nain, P., Guha, A., & Brown, S. A. (2025). The digital revolution in medicine: applications in cardio-oncology. Current treatment options in cardiovascular medicine, 27(1), 2. https: //doi.org/10.1007/s11936-024-01059-x
17. Esmaeilzadeh, P. (2024). Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine, 151, 102861. https://doi.org/10.1016/j.artmed.2024.102861
18. Ferreres, A. R. (2025). Ethical and legal issues regarding artificial intelligence (AI) and management of surgical data. European Journal of Surgical Oncology, 51(1), 108279. https://doi.org/10.1016/j.ejso.2024.108279
19. Forbes. (2024). Artificial intelligence in healthcare: Growth and trends. Retrieved from https://www.forbes.com
20. Grzybowski, A., Jin, K., & Wu, H. (2024). Challenges of artificial intelligence in medicine and dermatology. Clinics in Dermatology, 42(3), 210-215. https://doi.org/10.1016/j.clindermatol.2023.12.013
21. Han, J. H. (2022). Artificial intelligence in ophthalmology: Recent developments, applications, and surveys. Diagnostics, 12(8), 1927. https: //doi.org/10.3390/diagnostics12081927
22. Hidayat, E. Y., Hastuti, K., & Muda, A. K. (2025). Artificial intelligence in digital image processing: A bibliometric analysis. Intelligent Systems with Applications, 25, 200466. https://doi.org/10.1016/j.iswa.2024.200466
23. Lewin, S., Chetty, R., Ihdayhid, A. R., & Dwivedi, G. (2024). Ethical challenges and opportunities in applying artificial intelligence to cardiovascular medicine. Canadian Journal of Cardiology, 40(10), 1897-1906. https://doi.org/10.1016/j.cjca.2024.06.029
24. Lewin, S., Chetty, R., Ihdayhid, A. R., & Dwivedi, G. (2024). Ethical challenges and opportunities in applying artificial intelligence to cardiovascular medicine. Canadian Journal of Cardiology, 40(10), 1897-1906. https://doi.org/10.1016/j.cjca.2024.06.029
25. Loi, S. J., Ng, W., Lai, C., & Chua, E. C. P. (2025). Artificial intelligence education in medical imaging: A scoping review. Journal of Medical Imaging and Radiation Sciences, 56(2), 101798. https://doi.org/10.1016/j.jmir.2024.101798
26. Maheta, D. (2024, July 23). AI in Medicine: Find the Sure Shot Solution of Diseases. Bacancy Technology. https://www.bacancytechnology.com/blog/ai-in-medicine
27. Maheta, D. (2024, July 23). AI in Medicine: Find the Sure Shot Solution of Diseases. Bacancy Technology. https://www.bacancytechnology.com/blog/ai-in-medicine
28. Ma, S., Zhang, M., Sun, W., Gao, Y., Jing, M., Gao, L., & Wu, Z. (2025). Artificial intelligence and medical-engineering integration in diabetes management: Advances, opportunities, and challenges. Healthcare and Rehabilitation, 1(1), 100006. https://doi.org/10.1016/j.hcr.2024.100006
29. Martínez Quinteros, A. S., Treviño Acosta, F. A., Ramirez Calvillo, D. S., Astudillo González, P. C., Mármol Muñoz, T. R., & Franco Vaca, A. J. (2025). Impact of artificial intelligence-guided cardiac ablation techniques on the management of complex arrhythmias: A systematic review. Ibero-American Journal of Health Science Research, 5(1), 2–8.
https: //doi.org/10.56183/iberojhr.v5i1.702
30. Mauriello, S., Caloro, E., Pellegrino, M. E., Basil, M., Sours, A., Vazini, D., Oliva, G., & Silena, M. (2022). Artificial intelligence in breast cancer imaging: Risk classification, lesion detection and classification, treatment planning and diagnosis – A narrative review. Experimental and Therapeutic Anticancer Research, 3(6), 795-816.
https: //doi.org/10.37349/etat.2022.00113
31. Mukherjee, S., Chittipaka, V., Baral, M. M., Pal, S. K., & Rana, S. (2022). Impact of artificial intelligence in the healthcare sector. In Artificial Intelligence and Industry 4.0 (pp. 23-54). https: //doi.org/10.1016/B978-0-323-88468-6.00001-2
32. Ong, J. C. L., Chang, S. Y.-H., William, W., Butte, A. J., Shah, N. H., Chew, L. S. T., Liu, N., Doshi-Velez, F., Lu, W., Savulescu, J., & Ting, D. S. W. (2024). Ethical and regulatory challenges of large language models in medicine. The Lancet Digital Health, 6(6), e428-e432. https://doi.org/10.1016/S2589-7500(24)00061-X
33. Pinto-Coelho, L. (2023). How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering, 10(12), 1435.
https: //doi.org/10.3390/bioengineering10121435
34. Reddy, S. (2024). Generative AI in healthcare: an implementation science informed translational path on application, integration and governance. Implementation Science, 19(27). https://doi.org/10.1186/s13012-024-01357-9
35. Saheb, T., & Saheb, T. (2024). Correction: Mapping Ethical Artificial Intelligence Policy Landscape: A Mixed Method Analysis. Sci Eng Ethics 30, 20. https://doi.org/10.1007/s11948-024-00484-2
36. Schmidt, J., Schutte, N. M., Buttigieg, S., Novillo-Ortiz, D., Sutherland, E., Anderson, M., de Witte, B., Peolsson, M., Unim, B., Pavlova, M., Stern, A. D., Mossialos, E., & van Kessel, R. (2024). Mapping the regulatory landscape for artificial intelligence in health within the European Union. npj Digital Medicine, 7, Article 229. https://doi.org/10.1038/s41746-024-00449-6
37. Singh, P., Goyal, L., Mallick, D. C., Surani, S. R., Kaushik, N., Chandramohan, D., & Simhadri, P. K. (2024). Artificial Intelligence in Nephrology: Clinical Applications and Challenges. Kidney Medicine, 7(1), 100927. https://doi.org/10.1016/j.xkme.2024.100927
38. Solaiman, B. (2024). Legal and ethical considerations of artificial intelligence for residents in post-acute and long-term care. Journal of the American Medical Directors Association, 25(9), 105105. https://doi.org/10.1016/j.jamda.2024.105105
39. Sun, Q., Akman, A., & Schuller, B. W. (2024). Explainable Artificial Intelligence for Medical Applications: A Review. ACM Transactions on Computing for Healthcare. https://doi.org/10.1145/3709367
40. TechVidvan Team. (2020). Top 8 Applications of Artificial Intelligence in Healthcare. TechVidvan. https://techvidvan.com/tutorials/top-8-applications-of-artificial-intelligence-in-healthcare/
41. Ullah, N., Khan, J. A., De Falco, I., & Sannino, G. (2024). Explainable Artificial Intelligence: Importance, Use Domains, Stages, Output Shapes, and Challenges. ACM Computing Surveys, 57(4), Article No. 94, 1-36. https://doi.org/10.1145/3705724
42. Varela, M. D., Sen, S., Guimarães, T. A. C., Cabiri, N., Pontikos, N., Balaskas, K., & Michaelides, M. (2023). Artificial intelligence in retinal diseases: Clinical applications, challenges, and future directions. Graefe's Archive for Clinical and Experimental Ophthalmology, 261(11), 3283-3297. https: //doi.org/10.1007/s00417-023-06052-x
43. Wang, X., & Chen, Z. (2024). Necessity of artificial intelligence in medical education and teaching. Proceedings of the 2024 International Symposium on Artificial Intelligence for Education (ISAIE '24), pp. 160-165. https://doi.org/10.1145/3700297.3700325
44. Wubineh, B. Z., Deriba, F. G., & Woldeyohannis, M. M. (2024). Exploring the opportunities and challenges of implementing artificial intelligence in healthcare: A systematic literature review. Urologic Oncology: Seminars and Original Investigations, 42(3), 48-56. https://doi.org/10.1016/j.urolonc.2023.11.019
45. Yetgin, M. A. (2024). Perceptions of participants receiving health services about the effects of AI in the health sectors. In Impact of AI and Robotics on the Medical Tourism Industry (pp. 30). https: //doi.org/10.4018/979-8-3693-2248-2.ch004
46. Young, K. D. (2023). The healing powers of artificial intelligence. Finance & Development, 60(12), 22-25. International Monetary Fund. Retrieved from https://www.imf.org/ar/Publications/fandd/issues/2023/12/Case-Studies-AI-healing-powers-Kerry-Dooley-Young
47. Younis, H. A., Eisa, T. A. E., Nasser, M., Sahib, T. M., Noor, A. A., Alyasiri, O. M., Salisu, S., Hayder, I. M., & Younis, H. A. (2024). A systematic review and meta-analysis of artificial intelligence tools in medicine and healthcare: Applications, considerations, limitations, motivation and challenges. Diagnostics, 14(1), 109. https://doi.org/10.3390/diagnostics14010109
48. Zhang, X., Chen, Z., Gao, J., Huang, W., Li, P., & Zhang, J. (2022). A two-stage deep transfer learning model and its application for medical image processing in Traditional Chinese Medicine. Knowledge-Based Systems, 239, 108060.
https: //doi.org/10.1016/j.knosys.2021.108060
49. Zhang, X., Xu, Q., Wen, C., & Luo, Y. (2024). Construction and optimization of traditional Chinese medicine constitution prediction models based on deep learning. Digital Chinese Medicine, 7(3), 241-255. https: //doi.org/10.1016/j.dcmed.2024.12.004
50. IBM. (1997). Deep Blue vs. Garry Kasparov. Retrieved from https://www.ibm.com/ibm/history/exhibits/innovations/innovations_2.html
51. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484-489. https://doi.org/10.1038/nature16961